Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 194(2): 264-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37981219

RESUMO

Dystrophin deficiency alters the sarcolemma structure, leading to muscle dystrophy, muscle disuse, and ultimately death. Beyond limb muscle deficits, patients with Duchenne muscular dystrophy have numerous transit disorders. Many studies have highlighted the strong relationship between gut microbiota and skeletal muscle. The aims of this study were: i) to characterize the gut microbiota composition over time up to 1 year in dystrophin-deficient mdx mice, and ii) to analyze the intestine structure and function and expression of genes linked to bacterial-derived metabolites in ileum, blood, and skeletal muscles to study interorgan interactions. Mdx mice displayed a significant reduction in the overall number of different operational taxonomic units and their abundance (α-diversity). Mdx genotype predicted 20% of ß-diversity divergence, with a large taxonomic modification of Actinobacteria, Proteobacteria, Tenericutes, and Deferribacteres phyla and the included genera. Interestingly, mdx intestinal motility and gene expressions of tight junction and Ffar2 receptor were down-regulated in the ileum. Concomitantly, circulating inflammatory markers related to gut microbiota (tumor necrosis factor, IL-6, monocyte chemoattractant protein-1) and muscle inflammation Tlr4/Myd88 pathway (Toll-like receptor 4, which recognizes pathogen-associated molecular patterns) were up-regulated. Finally, in mdx mice, adiponectin was reduced in blood and its receptor modulated in muscles. This study highlights a specific gut microbiota composition and highlights interorgan interactions in mdx physiopathology with gut microbiota as the potential central metabolic organ.


Assuntos
Distrofina , Microbioma Gastrointestinal , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Distrofina/deficiência , Distrofina/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia
2.
Nutrients ; 13(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34836120

RESUMO

Gut microbiota, a major contributor to human health, is influenced by physical activity and diet, and displays a functional cross-talk with skeletal muscle. Conversely, few data are available on the impact of hypoactivity, although sedentary lifestyles are widespread and associated with negative health and socio-economic impacts. The study aim was to determine the effect of Dry Immersion (DI), a severe hypoactivity model, on the human gut microbiota composition. Stool samples were collected from 14 healthy men before and after 5 days of DI to determine the gut microbiota taxonomic profiles by 16S metagenomic sequencing in strictly controlled dietary conditions. The α and ß diversities indices were unchanged. However, the operational taxonomic units associated with the Clostridiales order and the Lachnospiraceae family, belonging to the Firmicutes phylum, were significantly increased after DI. Propionate, a short-chain fatty acid metabolized by skeletal muscle, was significantly reduced in post-DI stool samples. The finding that intestine bacteria are sensitive to hypoactivity raises questions about their impact and role in chronic sedentary lifestyles.


Assuntos
Microbioma Gastrointestinal/fisiologia , Descanso/fisiologia , Comportamento Sedentário , Adulto , Fezes/química , Fezes/microbiologia , Voluntários Saudáveis , Humanos , Imersão/fisiopatologia , Masculino , Propionatos/metabolismo , Simulação de Ausência de Peso
3.
Bio Protoc ; 11(8): e3989, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34124291

RESUMO

Mammalian target of rapamycin (mTOR) controls many crucial cellular functions, including protein synthesis, cell size, energy metabolism, lysosome and mitochondria biogenesis, and autophagy. Consequently, deregulation of mTOR signaling plays a role in numerous pathological conditions such as cancer, metabolic disorders and neurological diseases. Developing new tools to monitor mTOR spatiotemporal activation is crucial to better understand its roles in physiological and pathological conditions. However, the most widely used method to report mTOR activity relies on the quantification of specific mTOR-phosphorylated substrates by western blot. This approach requires cellular lysate preparation, which restricts the quantification to a single time point. Here, we present a simple protocol to study mTOR activity in living cells in real time using AIMTOR, an intramolecular BRET-based (bioluminescence resonance energy transfer) biosensor that we recently designed ( Bouquier et al., 2020 ). We describe transfection of AIMTOR in the C2C12 cell line and procedures to monitor BRET in a cell population using a plate reader and in single cells by microscopy. Importantly, this protocol is transposable to any cell line and primary cells. In addition, several subcellular compartment-specific versions of AIMTOR have been developed, enabling compartmentalized assessment of mTOR activity. This protocol describes how to use the sensitive AIMTOR biosensor to investigate mTOR signaling dynamics in living cells. Graphic abstract: AIMTOR protocol overview from seeding cells to live BRET recording.

4.
Am J Physiol Cell Physiol ; 319(5): C807-C824, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32877205

RESUMO

The Akt/mechanistic target of rapamycin (mTOR) signaling pathway governs macromolecule synthesis, cell growth, and metabolism in response to nutrients and growth factors. Regulated in development and DNA damage response (REDD)1 is a conserved and ubiquitous protein, which is transiently induced in response to multiple stimuli. Acting like an endogenous inhibitor of the Akt/mTOR signaling pathway, REDD1 protein has been shown to regulate cell growth, mitochondrial function, oxidative stress, and apoptosis. Recent studies also indicate that timely REDD1 expression limits Akt/mTOR-dependent synthesis processes to spare energy during metabolic stresses, avoiding energy collapse and detrimental consequences. In contrast to this beneficial role for metabolic adaptation, REDD1 chronic expression appears involved in the pathogenesis of several diseases. Indeed, REDD1 expression is found as an early biomarker in many pathologies including inflammatory diseases, cancer, neurodegenerative disorders, depression, diabetes, and obesity. Moreover, prolonged REDD1 expression is associated with cell apoptosis, excessive reactive oxygen species (ROS) production, and inflammation activation leading to tissue damage. In this review, we decipher several mechanisms that make REDD1 a likely metabolic double agent depending on its duration of expression in different physiological and pathological contexts. We also discuss the role played by REDD1 in the cross talk between the Akt/mTOR signaling pathway and the energetic metabolism.


Assuntos
Neoplasias/genética , Doenças Neurodegenerativas/genética , Proteínas Proto-Oncogênicas c-akt/genética , Estresse Fisiológico/genética , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Apoptose/genética , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Debilidade Muscular/genética , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Neoplasias/metabolismo , Neoplasias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo
5.
BMC Biol ; 18(1): 81, 2020 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-32620110

RESUMO

BACKGROUND: mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells. RESULTS: As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin. We further engineered several versions of AIMTOR enabling subcellular-specific assessment of mTOR activities. We then used AIMTOR to decipher mTOR signaling in physio-pathological conditions. First, we show that mTORC1 activity increases during muscle cell differentiation and in response to leucine stimulation in different subcellular compartments such as the cytosol and at the surface of the lysosome, the nucleus, and near the mitochondria. Second, in hippocampal neurons, we found that the enhancement of neuronal activity increases mTOR signaling. AIMTOR further reveals mTOR-signaling dysfunctions in neurons from mouse models of autism spectrum disorder. CONCLUSIONS: Altogether, our results demonstrate that AIMTOR is a sensitive and specific tool to investigate mTOR-signaling dynamics in living cells and phenotype mTORopathies.


Assuntos
Técnicas Biossensoriais/métodos , Transdução de Sinais , Serina-Treonina Quinases TOR/fisiologia , Animais , Diagnóstico por Imagem/métodos , Células HEK293 , Humanos , Camundongos , Músculo Quadríceps/fisiologia
6.
J Appl Physiol (1985) ; 127(5): 1297-1306, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487224

RESUMO

Exercise is important to maintain skeletal muscle mass through stimulation of protein synthesis, which is a major ATP-consuming process for cells. However, muscle cells have to face high energy demand during contraction. The present study aimed to investigate protein synthesis regulation during aerobic exercise in mouse hindlimb muscles. Male C57Bl/6J mice ran at 12 m/min for 45 min or at 12 m/min for the first 25 min followed by a progressive increase in velocity up to 20 m/min for the last 20 min. Animals were injected intraperitoneally with 40 nmol/g of body weight of puromycin and euthanized by cervical dislocation immediately after exercise cessation. Analysis of gastrocnemius, plantaris, quadriceps, soleus, and tibialis anterior muscles revealed a decrease in protein translation assessed by puromycin incorporation, without significant differences among muscles or running intensities. The reduction of protein synthesis was associated with a marked inhibition of mammalian target of rapamycin complex 1 (mTORC1)-dependent phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1, a mechanism consistent with reduced translation initiation. A slight activation of AMP-activated protein kinase consecutive to the running session was measured but did not correlate with mTORC1 inhibition. More importantly, exercise resulted in a strong upregulation of regulated in development and DNA damage 1 (REDD1) protein and gene expressions, whereas transcriptional regulation of other recognized exercise-induced genes (IL-6, kruppel-like factor 15, and regulator of calcineurin 1) did not change. Consistently with the recently discovered role of REDD1 on mitochondria-associated membranes, we observed a decrease in mitochondria-endoplasmic reticulum interaction following exercise. Collectively, these data raise questions concerning the role of mitochondria-associated endoplasmic reticulum membrane disruption in the regulation of muscle proteostasis during exercise and, more generally, in cell adaptation to metabolic stress.NEW & NOTEWORTHY How muscles regulate protein synthesis to cope with the energy demand during contraction is poorly documented. Moreover, it is unknown whether protein translation is differentially affected among mouse hindlimb muscles under different physiological exercise modalities. We showed here that 45 min of running decreases puromycin incorporation similarly in 5 different mouse muscles. This decrease was associated with a strong increase in regulated in development and DNA damage 1 protein expression and a significant disruption of the mitochondria and sarcoplasmic reticulum interaction.


Assuntos
Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Biossíntese de Proteínas , Animais , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/fisiologia , Contração Muscular , Retículo Sarcoplasmático/fisiologia , Fatores de Transcrição/metabolismo
7.
Am J Physiol Endocrinol Metab ; 317(1): E158-E171, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31039010

RESUMO

Gut microbiota is involved in the development of several chronic diseases, including diabetes, obesity, and cancer, through its interactions with the host organs. It has been suggested that the cross talk between gut microbiota and skeletal muscle plays a role in different pathological conditions, such as intestinal chronic inflammation and cachexia. However, it remains unclear whether gut microbiota directly influences skeletal muscle function. In this work, we studied the impact of gut microbiota modulation on mice skeletal muscle function and investigated the underlying mechanisms. We determined the consequences of gut microbiota depletion after treatment with a mixture of a broad spectrum of antibiotics for 21 days and after 10 days of natural reseeding. We found that, in gut microbiota-depleted mice, running endurance was decreased, as well as the extensor digitorum longus muscle fatigue index in an ex vivo contractile test. Importantly, the muscle endurance capacity was efficiently normalized by natural reseeding. These endurance changes were not related to variation in muscle mass, fiber typology, or mitochondrial function. However, several pertinent glucose metabolism markers, such as ileum gene expression of short fatty acid chain and glucose transporters G protein-coupled receptor 41 and sodium-glucose cotransporter 1 and muscle glycogen level, paralleled the muscle endurance changes observed after treatment with antibiotics for 21 days and reseeding. Because glycogen is a key energetic substrate for prolonged exercise, modulating its muscle availability via gut microbiota represents one potent mechanism that can contribute to the gut microbiota-skeletal muscle axis. Taken together, our results strongly support the hypothesis that gut bacteria are required for host optimal skeletal muscle function.


Assuntos
Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Glucose/metabolismo , Músculo Esquelético/fisiologia , Animais , Antibacterianos/farmacologia , Disbiose/induzido quimicamente , Disbiose/metabolismo , Disbiose/microbiologia , Disbiose/fisiopatologia , Metabolismo Energético/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Glicogênio/metabolismo , Homeostase/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Esquelético/efeitos dos fármacos
8.
BMC Biol ; 16(1): 65, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895328

RESUMO

BACKGROUND: Skeletal muscle atrophy is a common feature of numerous chronic pathologies and is correlated with patient mortality. The REDD1 protein is currently recognized as a negative regulator of muscle mass through inhibition of the Akt/mTORC1 signaling pathway. REDD1 expression is notably induced following glucocorticoid secretion, which is a component of energy stress responses. RESULTS: Unexpectedly, we show here that REDD1 instead limits muscle loss during energetic stresses such as hypoxia and fasting by reducing glycogen depletion and AMPK activation. Indeed, we demonstrate that REDD1 is required to decrease O2 and ATP consumption in skeletal muscle via reduction of the extent of mitochondrial-associated endoplasmic reticulum membranes (MAMs), a central hub connecting energy production by mitochondria and anabolic processes. In fact, REDD1 inhibits ATP-demanding processes such as glycogen storage and protein synthesis through disruption of the Akt/Hexokinase II and PRAS40/mTORC1 signaling pathways in MAMs. Our results uncover a new REDD1-dependent mechanism coupling mitochondrial respiration and anabolic processes during hypoxia, fasting, and exercise. CONCLUSIONS: Therefore, REDD1 is a crucial negative regulator of energy expenditure that is necessary for muscle adaptation during energetic stresses. This present study could shed new light on the role of REDD1 in several pathologies associated with energetic metabolism alteration, such as cancer, diabetes, and Parkinson's disease.


Assuntos
Metabolismo Energético/genética , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estresse Fisiológico/genética , Fatores de Transcrição/fisiologia , Adaptação Fisiológica/genética , Animais , Hipóxia Celular , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Atrofia Muscular/genética , Transdução de Sinais , Fatores de Transcrição/genética
9.
PLoS One ; 11(11): e0165420, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812135

RESUMO

NOD2 contributes to the innate immune response and to the homeostasis of the intestinal mucosa. In response to its bacterial ligand, NOD2 interacts with RICK and activates the NF-κB and MAPK pathways, inducing gene transcription and synthesis of proteins required to initiate a balanced immune response. Mutations in NOD2 have been associated with an increased risk of Crohn's Disease (CD), a disabling inflammatory bowel disease (IBD). Because NOD2 signaling plays a key role in CD, it is important to further characterize the network of protein interacting with NOD2. Using yeast two hybrid (Y2H) screens, we identified new NOD2 interacting proteins (NIP). The primary interaction was confirmed by coimmunoprecipitation and/or bioluminescence resonance energy transfer (BRET) experiments for 11 of these proteins (ANKHD1, CHMP5, SDCCAG3, TRIM41, LDOC1, PPP1R12C, DOCK7, VIM, KRT15, PPP2R3B, and C10Orf67). These proteins are involved in diverse functions, including endosomal sorting complexes required for transport (ESCRT), cytoskeletal architecture and signaling regulation. Additionally, we show that the interaction of 8 NIPs is compromised with the 3 main CD associated NOD2 mutants (R702W, G908R and 1007fs). Furthermore, to determine whether these NOD2 protein partners could be encoded by IBD susceptibility genes, a transmission disequilibrium test (TDT) was performed on 101 single nucleotide polymorphisms (SNPs) and the main corresponding haplotypes in genes coding for 15 NIPs using a set of 343 IBD families with 556 patients. Overall this work did not increase the number of IBD susceptibility genes but extends the NOD2 protein interaction network and suggests that NOD2 interactome and signaling depend upon the NOD2 mutation profile in CD.


Assuntos
Doença de Crohn/genética , Doença de Crohn/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Mapeamento de Interação de Proteínas , Linhagem Celular , Humanos , Macrófagos/metabolismo , Mutação , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Polimorfismo de Nucleotídeo Único
10.
Sci Rep ; 6: 28231, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27302735

RESUMO

Resonance Energy Transfer (RET)-based technologies are used to report protein-protein interactions in living cells. Among them, Bioluminescence-initiated RET (BRET) provides excellent sensitivity but the low light intensity intrinsic to the bioluminescent process hampers its use for the localization of protein complexes at the sub-cellular level. Herein we have characterized the methodological conditions required to reliably perform single-cell BRET imaging using an extremely bright luciferase, Nanoluciferase (Nluc). With this, we achieved an unprecedented performance in the field of protein-protein interaction imaging in terms of temporal and spatial resolution, duration of signal stability, signal sensitivity and dynamic range. As proof-of-principle, an Nluc-containing BRET-based sensor of ERK activity enabled the detection of subtle, transient and localized variations in ERK activity in neuronal dendritic spines, induced by the activation of endogenous synaptic NMDA receptors. This development will improve our comprehension of both the spatio-temporal dynamics of protein-protein interactions and the activation patterns of specific signaling pathways.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas Luminescentes/metabolismo , Análise de Célula Única/métodos , Células Cultivadas , Células HEK293 , Humanos , Ligação Proteica , Transdução de Sinais
11.
Trends Biochem Sci ; 40(6): 290-2, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25890866

RESUMO

We recently reviewed full-length nuclear receptor (NR) structures in an Opinion article wherein we carefully evaluated a large body of literature. As heads of three separate laboratories working on NR architectures, we expressed our shared insights and critical comments. One group (Moras et al.) has declined to accept our strong concerns about several of their published reports. We comment on their letter.


Assuntos
Proteínas de Ligação a DNA/química , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química
12.
J Med Chem ; 58(14): 5381-94, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25734377

RESUMO

Thiazolidinediones (TZDs), such as rosiglitazone and pioglitazone, are peroxisome proliferator-activated receptor γ (PPARγ) full agonists that have been widely used in the treatment of type 2 diabetes mellitus. Despite the demonstrated beneficial effect of reducing glucose levels in the plasma, TZDs also induce several adverse effects. Consequently, the search for new compounds with potent antidiabetic effects but fewer undesired effects is an active field of research. Interestingly, the novel proposed mechanisms for the antidiabetic activity of PPARγ agonists, consisting of PPARγ Ser273 phosphorylation inhibition, ligand and receptor mutual dynamics, and the presence of an alternate binding site, have recently changed the view regarding the optimal characteristics for the screening of novel PPARγ ligands. Furthermore, transcriptional genomics could bring essential information about the genome-wide effects of PPARγ ligands. Consequently, facing the new mechanistic scenario proposed for these compounds is essential for resolving the paradoxes among their agonistic function, antidiabetic activities, and side effects and should allow the rational development of better and safer PPARγ-mediated antidiabetic drugs.


Assuntos
PPAR gama/metabolismo , Animais , Descoberta de Drogas , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Ligantes , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , PPAR gama/química , Fosforilação/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Trends Biochem Sci ; 40(1): 16-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25435400

RESUMO

The crystal structures of three nuclear receptor (NR) complexes have emerged to reveal their multidomain architectures on DNA. These pictures provide unprecedented views of interfacial couplings between the DNA-binding domains (DBDs) and ligand-binding domains (LBDs). The detailed pictures contrast with previous interpretations of low-resolution electron microscopy (EM) and small angle X-ray scattering (SAXS) data, which had suggested a common architecture with noninteracting DBDs and LBDs. Revisiting both historical and recent interpretations of NR architecture, we invoke new principles underlying higher-order quaternary organization and the allosteric transmission of signals between domains. We also discuss how NR architectures are being probed in living cells to understand dimerization and DNA-binding events in real time.


Assuntos
Proteínas de Ligação a DNA/química , Conformação Proteica , Estrutura Terciária de Proteína , Receptores Citoplasmáticos e Nucleares/química , Sítios de Ligação , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/metabolismo , Ligantes , Microscopia Eletrônica , Receptores Citoplasmáticos e Nucleares/metabolismo , Espalhamento a Baixo Ângulo , Relação Estrutura-Atividade
14.
PLoS One ; 9(12): e114388, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25489948

RESUMO

Sirtuin 3 (SIRT3), one of the seven mammalian sirtuins, is a mitochondrial NAD+-dependent deacetylase known to control key metabolic pathways. SIRT3 deacetylases and activates a large number of mitochondrial enzymes involved in the respiratory chain, in ATP production, and in both the citric acid and urea cycles. We have previously shown that the regulation of myoblast differentiation is tightly linked to mitochondrial activity. Since SIRT3 modulates mitochondrial activity, we decide to address its role during myoblast differentiation. For this purpose, we first investigated the expression of endogenous SIRT3 during C2C12 myoblast differentiation. We further studied the impact of SIRT3 silencing on both the myogenic potential and the mitochondrial activity of C2C12 cells. We showed that SIRT3 protein expression peaked at the onset of myoblast differentiation. The inhibition of SIRT3 expression mediated by the stable integration of SIRT3 short inhibitory RNA (SIRT3shRNA) in C2C12 myoblasts, resulted in: 1) abrogation of terminal differentiation - as evidenced by a marked decrease in the myoblast fusion index and a significant reduction of Myogenin, MyoD, Sirtuin 1 and Troponin T protein expression - restored upon MyoD overexpression; 2) a decrease in peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and citrate synthase protein expression reflecting an alteration of mitochondrial density; and 3) an increased production of reactive oxygen species (ROS) mirrored by the decreased activity of manganese superoxide dismutase (MnSOD). Altogether our data demonstrate that SIRT3 mainly regulates myoblast differentiation via its influence on mitochondrial activity.


Assuntos
Diferenciação Celular , Mitocôndrias/enzimologia , Mioblastos/citologia , NAD/metabolismo , Sirtuína 3/metabolismo , Animais , Linhagem Celular , Regulação para Baixo , Técnicas de Silenciamento de Genes , Camundongos , Mitocôndrias/metabolismo , Proteína MyoD/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/deficiência , Sirtuína 3/genética , Fatores de Transcrição/metabolismo
15.
Am J Physiol Endocrinol Metab ; 307(11): E983-93, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25315696

RESUMO

REDD1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. REDD1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, REDD1 function seems to be tissue and stress dependent, and its role in skeletal muscle in vivo has been poorly characterized. Here, we investigated the effect of REDD1 deletion on skeletal muscle mass, protein synthesis, proteolysis, and mTORC1 signaling pathway under basal conditions and after glucocorticoid administration. Whereas skeletal muscle mass and typology were unchanged between wild-type (WT) and REDD1-null mice, oral gavage with dexamethasone (DEX) for 7 days reduced tibialis anterior and gastrocnemius muscle weights as well as tibialis anterior fiber size only in WT. Similarly, REDD1 deletion prevented the inhibition of protein synthesis and mTORC1 activity (assessed by S6, 4E-BP1, and ULK1 phosphorylation) observed in gastrocnemius muscle of WT mice following single DEX administration for 5 h. However, our results suggest that REDD1-mediated inhibition of mTORC1 in skeletal muscle is not related to the modulation of the binding between TSC2 and 14-3-3. In contrast, our data highlight a new mechanism involved in mTORC1 inhibition linking REDD1, Akt, and PRAS40. Altogether, these results demonstrated in vivo that REDD1 is required for glucocorticoid-induced inhibition of protein synthesis via mTORC1 downregulation. Inhibition of REDD1 may thus be a strategy to limit muscle loss in glucocorticoid-mediated atrophy.


Assuntos
Dexametasona , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Animais , Corticosterona/metabolismo , Fezes/química , Feminino , Camundongos , Contração Muscular/fisiologia , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteólise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-23908646

RESUMO

Networks of signaling molecules are activated in response to environmental changes. How are these signaling networks dynamically integrated in space and time to process particular information? To tackle this issue, biosensors of single signaling pathways have been engineered. Bioluminescence resonance energy transfer (BRET)-based biosensors have proven to be particularly efficient in that matter due to the high sensitivity of this technology to monitor protein-protein interactions or conformational changes in living cells. Extracellular signal-regulated kinases (ERK) are ubiquitously expressed and involved in many diverse cellular functions that might be encoded by the strength and spatio-temporal pattern of ERK activation. We developed a BRET-based sensor of ERK activity, called Rluc8-ERKsubstrate-Venus (REV). As expected, BRET changes of REV were correlated with ERK phosphorylation, which is required for its kinase activity. In neurons, the nature of the stimuli determines the strength, the location, or the moment of ERK activation, thus highlighting how acute modulation of ERK may encode the nature of initial stimulus to specify the consequences of this activation. This study provides evidence for suitability of REV as a new biosensor to address biological questions.

17.
PLoS One ; 8(12): e84569, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24391967

RESUMO

BACKGROUND: Nuclear receptors (NR) regulate transcription of genes involved in many biological processes such as development, cell proliferation, differentiation and cell death. Amongst them, PPARG2 and THR control tissue glucose and lipid homeostasis which are deregulated in severe pathophysiological conditions such as metabolic syndromes. METHODOLOGY/PRINCIPAL FINDINGS: Here, we describe a real time BRET approach to monitor heterodimerization between RXR and PPARG2 or THR in vitro or in living cells. The presence of a specific DNA target was required to induce in vitro a BRET shift reflecting heterodimerization of RXR/PPARG2 or RXR/THR. As in electrophoretic mobility shift assay (EMSA), the stringency and specificity of the BRET shift assay depended upon assay condition optimization including MgCl2 concentration. For the nuclear receptors, we found by mutagenesis analysis that each heterodimer partner must harbor an intact DNA binding domain to induce BRET and heterodimerization on a DNA target. Moreover the interaction between the PPARG2 ligand binding domain and the RXR DNA binding domain stabilized the heterodimer on its DNA target. BRET microscopy in living cells highlighted the heterodimerization of RXR/PPARG2 within the nucleus clustered in discrete foci that may represent active target gene transcription regulation regions. BRET imaging also suggested that heterodimerization between RXR and PPARG2 required the DNA binding of PPARG2. CONCLUSIONS/SIGNIFICANCE: The BRET approach described here allowed us to study the dynamic interactions which exist between NR in vitro or in living cells and can provide important information on heterodimerization modes, affinity with a given RE and subcellular localization of the heterodimers. This method could be used to study real time changes of NR heterodimers occurring on DNA depending upon cell activation, chromatin state and help to define the mechanisms of ligands or drug action designed to target NRs.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , PPAR gama/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Receptores X de Retinoides/metabolismo , Sistemas Computacionais , Dimerização
18.
J Cell Biol ; 198(2): 251-63, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22801779

RESUMO

Scaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission. Despite a broad colocalization of the proteins in neurons, we show that spine-confined assembly/disassembly of this scaffold complex, physiologically triggered by sustained activation of synaptic NMDA (N-methyl-d-aspartate) receptors, induces physical association between ionotropic (NMDA) and metabotropic (mGlu5a) synaptic glutamate receptors. This physical interaction results in an mGlu5a receptor-mediated inhibition of NMDA currents, providing an activity-dependent negative feedback loop on NMDA receptor activity. Such protein scaffold remodeling represents a form of homeostatic control of synaptic excitability.


Assuntos
Espinhas Dendríticas/fisiologia , Transmissão Sináptica/fisiologia , Animais , Células HEK293 , Hipocampo/fisiologia , Homeostase/fisiologia , Humanos , Ratos , Receptores de Glutamato/fisiologia
19.
Cell Host Microbe ; 11(4): 337-51, 2012 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-22520462

RESUMO

Yersinia pseudotuberculosis is an enteropathogenic bacteria that disrupts the intestinal barrier and invades its host through gut-associated lymphoid tissue and Peyer's patches (PP). We show that the Y. pseudotuberculosis effector YopJ induces intestinal barrier dysfunction by subverting signaling of the innate immune receptor Nod2, a phenotype that can be reversed by pretreating with the Nod2 ligand muramyl-dipeptide. YopJ, but not the catalytically inactive mutant YopJ(C172A), acetylates critical sites in the activation loops of the RICK and TAK1 kinases, which are central mediators of Nod2 signaling, and decreases the affinity of Nod2 for RICK. Concomitantly, Nod2 interacts with and activates caspase-1, resulting in increased levels of IL-1ß. Finally, IL-1ß within PP plays an essential role in inducing intestinal barrier dysfunction. Thus, YopJ alters intestinal permeability and promotes the dissemination of Yersinia as well as commensal bacteria by exploiting the mucosal inflammatory response.


Assuntos
Proteínas de Bactérias/metabolismo , Caspase 1/metabolismo , Intestinos/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Infecções por Yersinia pseudotuberculosis/enzimologia , Yersinia pseudotuberculosis/metabolismo , Animais , Proteínas de Bactérias/genética , Caspase 1/genética , Linhagem Celular , Feminino , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Transdução de Sinais , Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/genética , Infecções por Yersinia pseudotuberculosis/metabolismo , Infecções por Yersinia pseudotuberculosis/microbiologia
20.
Br J Nutr ; 106(4): 491-501, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21554810

RESUMO

Accumulation of muscle TAG content and modification of muscle phospholipid fatty acid pattern may have an impact on lipid metabolism, increasing the risk of developing diabetes. Some polyphenols have been reported to modulate lipid metabolism, in particular those issued from red grapes. The present study was designed to determine whether a grape polyphenol extract (PPE) modulates skeletal muscle TAG content and phospholipid fatty acid composition in high-fat-high-sucrose (HFHS) diet-fed rats. Muscle plasmalemmal and mitochondrial fatty acid transporters, GLUT4 and lipid metabolism pathways were also explored. The PPE decreased muscle TAG content in HFHS/PPE diet-fed rats compared with HFHS diet-fed rats and induced higher proportions of n-3 PUFA in phospholipids. The PPE significantly up-regulated GLUT4 mRNA expression. Gene and protein expression of muscle fatty acid transporter cluster of differentiation 36 (CD36) was increased in HFHS diet-fed rats but returned to control values in HFHS/PPE diet-fed rats. Carnitine palmitoyltransferase 1 protein expression was decreased with the PPE. Mitochondrial ß-hydroxyacyl CoA dehydrogenase was increased in HFHS diet-fed rats and returned to control values with PPE supplementation. Lipogenesis, mitochondrial biogenesis and mitochondrial activity were not affected by the PPE. In conclusion, the PPE modulated membrane phospholipid fatty acid composition and decreased muscle TAG content in HFHS diet-fed rats. The PPE lowered CD36 gene and protein expression, probably decreasing fatty acid transport and lipid accumulation within skeletal muscle, and increased muscle GLUT4 expression. These effects of the PPE are in favour of a better insulin sensibility.


Assuntos
Suplementos Nutricionais , Ácidos Graxos/metabolismo , Flavonoides/uso terapêutico , Frutas/química , Músculo Esquelético/metabolismo , Fenóis/uso terapêutico , Extratos Vegetais/uso terapêutico , Vitis/química , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Gorduras na Dieta/efeitos adversos , Sacarose na Dieta/efeitos adversos , Regulação da Expressão Gênica , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Masculino , Fitoterapia , Polifenóis , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...